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Mechanistic Insights into Ischemic
Mitral Regurgitation: Echocardiographic

and Surgical Implications

Jeffrey J. Silbiger, MD, FASE, New York, New York

Ischemic mitral regurgitation is a common complication of the healing phase of myocardial infarction. A
number of mechanisms have been invoked in its pathogenesis, including alterations of papillary muscle posi-
tion, annular dynamics, and intraventricular synchrony. The echocardiographic hallmark of ischemic mitral re-
gurgitation is systolic tethering of the mitral valve leaflets away from the annular plane. A number of leaflet
tethering parameters have been described (tenting height and area, leaflet angles) that provide insight into
themechanismof tethering aswell as prognostic information about the durability of mitral valve repair. Restric-
tive annuloplasty and coronary artery revascularization promote reverse remodeling and remain the most
common surgical treatment. Innovative subannular therapies and a number of percutaneous interventions
are under investigation. (J Am Soc Echocardiogr 2011;24:707-19.)
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Ischemic mitral regurgitation (MR) is a complication of the chronic
healing phase of myocardial infarction (MI). As the left ventricle re-
models after MI, the normal geometry of the mitral apparatus be-
comes distorted, resulting in incomplete leaflet closure and valvular
regurgitation.1 Unlike degenerative and infectious disorders, however,
the structural integrity of the leaflets and chords remain intact.

Ischemic MR occurs commonly after MI, with an estimated preva-
lence of 20% to 50%,2,3 and its presence has been shown to
significantly worsen prognosis independent of ejection fraction.3

Indeed, a stepwise increase in mortality can be demonstrated as effec-
tive regurgitant orifice area (ROA) increases (Figure 1). It is also worth-
while noting that even subjects with otherwise clinically insignificant
amounts ofMR (effectiveROA<20mm2) haveexcessmortality rates.3

Despite considerable interest in this disorder, the pathogenesis of
ischemic MR remains incompletely understood, and the optimal sur-
gical approach remains largely controversial. Echocardiography has
helped facilitate much of our current understanding of the mecha-
nisms involved in ischemic MR and is emerging as a useful tool for
surgical planning. In this review, I discuss the pathogenesis, echocar-
diographic diagnosis, and surgical treatment of this disorder.
PATHOGENESIS OF ISCHEMIC MITRAL REGURGITATION

Alterations of Left Ventricular (LV) Geometry

In 1963, Burch et al.4wrote that ‘‘duringperiods of anginapectoris, reduc-
tion in the circulation to a papillary muscle (PM) may result in total or
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partial failure of the PM to contract producing a murmur of MR.
When the circulation is restored, the PM.gradually regains its function
and the murmur.slowly disappears.’’ The long-held notion that ische-
mic MR is due to PM dysfunction has a sound physiologic basis. In the
normal heart, PM contraction prevents themitral valve leaflets from fall-
ing back into the left atrium during systole. When the left ventricle con-
tracts, the annulus descends toward the apex. Were it not for
simultaneous contraction of the vertically oriented fibers of the PMs,
slackening of the chords might otherwise permit the leaflets to prolapse
into the left atriumas the annulus descends. Instead, a constantdistance is
maintained between the mitral annulus and the tips of the PMs, thereby
preventing MR.5 Notwithstanding these observations, animal models of
isolated PM infarction fail to produceMR6. The finding thatMRdoes oc-
cur when muscle adjacent to the PM is infarcted6,7 is significant,
particularly in light of the observation that such muscle readily deforms
in response to increases in afterload.8 Taken together, these findings sug-
gest an alternative mechanism for ischemicMR unrelated tomyocardial
ischemia, providing insight intowhy ischemicMRworsens with exercise
despite the absence of inducible ischemia.9,10 It has been proposed that
the increase in afterload attending exercise worsens MR through
geometric distortion of the infarcted PM-bearing segments, shifting
them away from the annular plane. Increased chordal traction, in turn,
tethers the leaflets, which become effaced, resulting in incompletemitral
valve closure and worsening regurgitation.1

Several additional lines of evidence support the notion that ische-
mic MR is more related to dynamic changes in loading conditions
than to the effects of reversible myocardial ischemia. One study dem-
onstrated that despite surgical revascularization, hemodynamically
significant MR persists postoperatively in as many as 40% of pa-
tients.11 Additional evidence suggesting that load plays a role in the
pathogenesis of ischemic MR comes from the often-made clinical ob-
servation that diuretics and afterload reducing agents, commonly
used in the treatment of these patients, reduce MR severity.12

Reduced afterload during general anesthesia also decreasesMR sever-
ity, and for this reason, echocardiographic evaluation of ischemic MR
should ideally precede valve repair.11 Not uncommonly, patients with
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ischemic MR complain of signifi-
cant effort intolerance but ex-
hibit only minimal MR when
studied at rest. Stress echocardi-
ography can be especially useful
in such patients andmay unmask
higher grades of MR from the in-
creased afterload attained with
exercise.9,10 One study found
that an exercise-related increase
in effective ROA of $0.13 cm2

significantly worsens progno-
sis.13

Mitral valve closure is a dy-
tion.3
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namic process in which two opposing forces, a tethering force and
a closing force, act simultaneously on the leaflets determining their in-
stantaneous position throughout systole. The tethering force, im-
parted by the PMs and chords, pulls the leaflets away from the
annular plane, and the closing force, generated by LV contraction,
drives them in the opposite direction (Figure 2). Ischemic MR results
from an imbalance between these forces, tipped in favor of the for-
mer. As the left ventricle remodels after MI, increased tethering im-
pairs the systolic excursion of the leaflets toward the annulus,1,14-16

and valvular competence becomes increasingly dependent on
closing forces.14 Figure 3 depicts the dynamic interaction of closing
and tethering forces in ischemic MR. Note that the ROA becomes
substantially reduced in midsystole, when LV pressure (closing force)
is maximal, whereas in early and late systole, when LV pressures are
lower, tethering forces are less opposed, allowing the ROA to in-
crease.15,16 Excess tethering results in leaflet deformation, producing
a characteristic tented appearance readily recognized
echocardiographically.17-19
Figure 2 Figures depict closing and tethering forces in the nor-
mal ventricle (left) and after inferior MI (right). In the normal ven-
tricle, the mitral leaflets reach the annular plane during systole.
PM displacement after infarction increases tethering forces,
which pull the mitral leaflets away from the annular plane result-
ing in incomplete mitral leaflet closure. Ao, Aorta; LA, left atrium.
Reproduced with permission from Circulation.81
Alterations of Mitral Annular Mechanics

The mitral annulus is thin fibrous membrane separating the left heart
chambers. Its shape has been likened to a saddle, with peaks located
anteriorly (at the ‘‘riding horn’’) and posteriorly, and valleys located
medially and laterally, at the commissures.20 This nonplanar shape
significantly reduces the stress exerted on the leaflets during ventric-
ular systole.21 The annulus undergoes conformational changes during
the cardiac cycle, reducing its area through dorsiflexion of its fibrous
anterior portion and by sphincteric contraction of its muscular poste-
rior portion (Figure 4). Because the annulus is intrinsically noncontrac-
tile, its motion is determined by that of the structures surrounding
it.20,22 Hence, annular flexion results from posterior displacement
of the aortomitral curtain as the aortic root expands during
systole.23-26 Sphincteric contraction of the posterior annulus, which
begins in late diastole,23-29 is caused by shortening of atrial fibers
encircling the annulus. With the onset of ventricular systole,
shortening of helical LV fibers causes further contraction, with
annular area reaching its nadir in midsystole.22-26 These changes in
size and shape bring the free margins of the mitral leaflets into
contact, and as systolic pressure increases, the leaflets become
pressed together, creating a competent overlapping coaptation
length,30,31 which normally measures about 1 cm (Figure 5).32

The annulus undergoes a number of structural changes in ischemic
MR, becoming larger and flatter (Figure 6).33-35 An increase in size
causes effacement of the mitral leaflets compromising coaptation
length. In vitro models36 predict that the coaptation length is suffi-
ciently redundant, permitting an increase in annular area of approxi-
mately 1.8 times before MR develops. As the annulus enlarges,
exposure of interscallop slits on the posterior mitral leaflet may create
additional sites of regurgitation.37,38 It has also been shown that the
annulus becomes more nonplanar in ischemic MR.25,35 This has
important pathophysiologic effects, increasing the systolic closing
stresses imposed on the mitral leaflets.39 Alterations in annular con-
traction, which could interfere with leaflet coaptation, have been
described in patients with ischemic MR. Three-dimensional imaging
reveals a reduction in the total extent of annular contraction and pro-
longed contraction extending through late systole.40 It is important to
note that the relative contribution of annular enlargement and dys-
function to the overall regurgitant burden in patients with ischemic
MR is minor compared with that imparted by augmented leaflet teth-
ering forces.15,41,42
Dyssynchronous LV Contraction

Dyssynchronous LV contraction is an important determinant of ische-
mic MR. In fact, hemodynamically significant MR is nearly twice as
common among patients with QRS durations >130 msec compared



Figure 3 (A) Superimposed graphs of ROA (blue) and LV pressure (LVP) (green) during systole. Note that ROA reaches its nadir in
midsystole, when LVP (closing force) is maximal. In early and late systole, when LVP is lower, tethering forces are less opposed, al-
lowing ROA to increase. Reproducedwith permission from J AmColl Cardiol.44 (B)ColorM-mode tracing obtained by interrogation of
the proximal convergence zone (PCZ) in a patient with ischemic MR. Note that the radius of the PCZ reaches its nadir in midsystole
(arrow) coincident with peak LVP. Reproduced with permission from Otsuji Y, Levine RA, Takeuci M, Sakata R, Tei C. Mechanism of
ischemic MR. J Cardiol 2008;51:145–56.
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with those with normal QRS durations.43 A number of mechanisms
have been invoked to account for this. Delayed activation of the lat-
eral PM causes uncoordinated contraction of the PMs, resulting in
malalignment of themitral valve leaflets44 (Figure 7). Additionally, un-
coordinated contraction of themusculature at the base of the left ven-
tricle impairs sphincteric contraction of the posterior mitral annulus,45

which can interfere with leaflet coaptation. Dyssynchronous LV con-
traction also blunts the rate of pressure generation (dP/dt) by the left
ventricle. The resultant decrease in closing force leaves tethering
forces relatively unrestrained, increasing leaflet deformation.46

Cardiac resynchronization therapy (CRT) has been shown to reverse
a number of these abnormalities and is discussed below.
dergoes a folding motion (curved blue arrow) along its mediolat-
eral (intercommissural) axis. The muscular posterior (Post)
annulus undergoes sphincteric contraction, indicated by the
curved red and black arrows. Lat, Lateral; Med, medial. Repro-
duced with permission from J Thorac Cardiovasc Surg.26
Adaptations to Ischemic MR

Despite comparable amounts of geometric distortion of the left ven-
tricle, significant patient-to-patient differences in MR burden are ob-
served clinically. Several mechanisms can be invoked to account for
this heterogeneity. Studies have shown that the mitral valve is capable
of remodeling after MI, with adaptive increases in leaflet surface area
developing in response to increased tethering forces.47 This tissue re-
sponse reducesMR by restoring coaptation length,48 and it is conceiv-
able that individual variability in the extent of such adaptive leaflet
remodeling may account, in part, for the differences in MR severity
seen among patients.

Adaptive changes in PM morphology and function may also occur
afterMI.7,49,50 It has been observed thatMR can be attenuated by PM
remodeling, with an increase in length from tip to base. Paradoxical
systolic elongation of the PMs may further reduce leaflet tethering
forces, as depicted in Figure 8.

Ischemic MR usually worsens in response to the increased tether-
ing forces attending exercise, but patients with preserved contractility
of the musculature of the basal inferoposterior segments frequently
demonstrate a decrease in MR during exercise.15 It has been pro-
posed that such patients are able to compensate by recruiting contrac-
tile reserve within these myocardial segments, increasing sphincteric
contraction of the posterior mitral annulus.15,51 In this respect,
individuals with separate coronary artery blood supplies to the mid
inferoposterior segments, overlying the PMs, and to the basal
inferoposterior segments, adjacent to the posterior annulus, may be
at some teleologic advantage.
ECHOCARDIOGRAPHIC RECOGNITION OF ISCHEMIC

MITRAL REGURGITATION

Echocardiography plays an important role in the evaluation of ische-
mic MR. Localized or diffuse changes in LV size and shape due to
post-MI remodeling can be readily appreciated. Echocardiography
is also useful in characterizing deformational changes in the mitral
leaflets caused by tethering.
Post-MI Ventricular Remodeling

Ischemic MR is a disease of the left ventricle. As the ventricle re-
models after MI, the normal geometric relationship of the PM andmi-
tral valve becomes altered, resulting in increased leaflet tethering and
MR. Early after transmural MI, the necrotic myocardium of the



Figure 5 Coaptation length. Conformational changeswithin the annulus bring themitral leaflet tips into contact (left). As systolic pres-
sure increases (right), the leaflet bodies become pressed together forming an overlapping a zone of coaptation. Coaptation length
(arrow) can be measured by subtracting the length of the traced red surface from that of the traced green surface. MV, Mitral valve.
Reproduced with permission from J Cardiol.30
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affected region thins and enlarges (infarct expansion).8 Ventricular re-
modeling, however, frequently does not remain confined to the re-
gion of infarction. Echocardiographic studies have demonstrated
dilatation of noninfarcted myocardial segments remote from the
site of infarction.52 Such remote remodeling can result in marked
and diffuse LV enlargement, thought to represent an adaptive re-
sponse (using the Frank-Starling mechanism) to maintain stroke vol-
ume in the face of lost contractile elements.8 It is important to
recognize that it is the site of LV remodeling, more than its extent,
that is the more important determinant of whether ischemic MR
will develop. LV dilatation, even when marked, may not cause MR
unless accompanied by geometric distortion in the region of the
PM. This explains the high prevalence of ischemic MR in patients
with localized infarction of inferior wall.53 Ischemic MR can also de-
velop in the absence of any echocardiographically evident scar, pre-
sumably from highly localized remodeling limited to the region of
the PM.

Echocardiographic Parameters of Leaflet Tethering

A number of echocardiographic parameters of leaflet tethering have
been described (Figure 9). Besides providing quantitative informa-
tion about leaflet deformation, these offer insight into the mecha-
nism of tethering as well as prognostic information about the
durability of mitral valve repair (discussed in the subsequent sec-
tion). Tenting height7,9 is the vertical distance between the mitral
annulus and the leaflet coaptation point. The region bound by the
annulus and the mitral valve leaflets is referred to as the tenting
area.7,9 Tenting volume, measured by three-dimensional echocardiog-
raphy, is less susceptible to foreshortening and therefore correlates
better with ROA in patients with ischemic MR.54 It is important
to recognize that all three tenting indices reflect the global tethering
burden imposed on the mitral valve, because they integrate a num-
ber of otherwise independent geometric factors (i.e., anterior leaflet
tethering, posterior leaflet tethering, annular size, and the leaflet co-
aptation point55). Information about regional leaflet tethering can,
however, be obtained by measuring individual mitral leaflet angles.
A wide posterior leaflet angle indicates posterior leaflet restriction.
Widening of the basal anterior leaflet angle implies restriction limited
to the basal portion of the anterior mitral leaflet (AML). The com-
bined effects of tethering of both the basal and distal portions of
the AML can be determined by measuring the distal anterior leaflet
angle.9,55-57

The area of the mitral annulus can be estimated by measuring
orthogonal annular dimensions assuming an ellipsoid shape.58 This
geometric assumption can be avoided with three-dimensional imag-
ing,24-26 which also provides dynamic information about annular
folding, contraction, and translation. It should be emphasized that
echocardiography measures the projected area of the annulus, not
its actual nonplanar surface area. Normal indexed diastolic annular
area is approximately 5 cm2/m2, decreasing by about 25% by
midsystole.59 Coaptation length, a measure of coaptation reserve, can
be measured echocardiographically,30,32 as shown in Figure 5.



Strain (%)

0

-5

-10

-15

-20
0                 1.0                2.0

Time (sec)

sec

Figure 7 Doppler strain tracings obtained by interrogation the
medial (green) and lateral (blue) PMs in a patient with intraven-

Figure 6 Three-dimensional echocardiographic reconstructions of the mitral annulus viewed en face (above) and in profile (below).
Note the increased annular area and nonplanarity after MI. These changes are more prominent after anterior infarction. Reproduced
with permission from Circulation.35
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Echocardiographic Tethering Patterns

Tethering is characterized echocardiographically by displacement of
the mitral valve leaflets away from the annular plane during
systole17,60 and is best appreciated in the apical four-chamber view.
Traction exerted by the basal chords on the body of the AML creates
a characteristic angulation or ‘‘bent knee’’ appearance. The tension
within the basal chords is transmitted from their point of attachment
at mid leaflet61 down to the leaflet base, rendering the proximal por-
tion of the leaflet more or less immobile.

Two echocardiographic tethering patterns have been described,
asymmetric and symmetric, on the basis of the disposition of the mi-
tral leaflets with respect to their point of coaptation17,60 (Figure 10).
With asymmetric tethering (Figures 10B and 11, Videos 1A and 1B

[view video clips online]), the anterior leaflet coapts against
the atrial surface of the posterior leaflet, creating a ‘‘pseudoprolapse’’
appearance. This is caused by disproportionately greater tethering of
the posterior leaflet.62 TheMR jet associatedwith asymmetric tethering
is typically eccentric, oriented along the posterior wall of the left
atrium.17 A symmetric tethering pattern (Figures 10C and 12, Video 2

[view video clips online]) results when there is balanced tether-
ing of both leaflets such that the coaptation point remains at the leaf-
lets’ tips, albeit displaced apically.17,60 The MR jet associated with
symmetrical tethering is typically oriented centrally.17
tricular dyssynchrony and ischemic MR. Note the significant
time offset in peak developed strain. These tracings were not
recorded simultaneously but are depicted as such for clarity.
Reproduced with permission from J Am Coll Cardiol.44
TREATMENT OF ISCHEMIC MITRAL REGURGITATION

Restrictive Mitral Annuloplasty

Restrictivemitral annuloplasty combinedwith coronary revasculariza-
tion is currently the conventional approach for the surgical treatment
of ischemic MR. Insertion of an undersized annuloplasty ring restores
valve competence by decreasing the anteroposterior dimension of the
annulus.63 It is important to recognize, however, that restrictive annu-
loplasty alters the normal closing mechanism of the mitral valve.64 By
hoisting the posterior annulus anteriorly, undersizing increases the dis-
tance between the tip of the PM and the posterior annulus, augment-
ing posterior leaflet tethering. Excess tethering substantially widens
the posterior leaflet angle such that valve closure becomes entirely
dependent on the AML, which must span the annulus to maintain
competence65,66 (Figure 13, Video 3 [view video clips online]).

Restoring the anteroposterior diameter of the annulus with restric-
tive annuloplasty may not be sufficient to relieve MR, and adjunctive
procedures that reduce leaflet tetheringmay be necessary. Strut chord
transection (chordal cutting) has recently been proposed as a strategy



Figure 9 Leaflet deformation indices. (A) Parasternal long-axis view. The tenting area is outlined in green. The tenting height (red ar-
row) extends from the annulus to the coaptation point. (B) Apical four-chamber view demonstrating leaflet angles. The proximal an-
terior leaflet angle is formed by the intersection of the annulus (dashed line) and the anterior leaflet bending distance. The distal
anterior leaflet angle is formed by the intersection of the annulus and the anterior leaflet tip distance. The posterior leaflet angle is
formed by the intersection of the annulus and the posterior leaflet length. The green dot represents the point of leaflet coaptation.
LA, Left atrium; LV, left ventricle. Reproduced with permission from Am J Cardiol.56

Figure 8 (A) Illustration depicting how PM remodeling attenuates leaflet tethering after inferior infarction. (B)Doppler strain tracing of
a normal PM developing negative systolic strain. (C)Doppler strain tracing showing positive systolic strain resulting from paradoxical
elongation of the PM. Elongation decreases the tethering distance between the tip of the PM and the anterior annulus (yellow arrows).
LA, Left atrium; LV, left ventricle. Reproduced with permission from J Am Coll Cardiol.49
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for alleviating excess tethering of the AML.67 The strut chords are the
most prominent (i.e., thickest and longest) of the basal chord attached
to the AML.61 By increasing the surface area available for coaptation,
strut chord transection helps restore coaptation length (Figure 14).
There continues to be controversy, however, regarding the safety of
this procedure. The strut chords constitute the anatomic interface



Figure 10 Tethering patterns. (A) Normal leaflet coaptation: the
bodies of both mitral leaflets are in the annular plane, and their
coaptation point is located just above it. Marginal chords (MC)
attach to the anterior leaflet’s tip, and basal chords (BC) attach
at mid leaflet. (B) Asymmetric tethering: the point of coaptation
is located on the atrial surface of the posterior leaflet, creating
a ‘‘pseudoprolapse’’ appearance. Note that the predominant
tethering vector is oriented posteriorly (arrow). (C) Symmetric
tethering: both leaflets coapt along their free margins at a signif-
icantly increased distance above the annular plane. The pre-
dominant tethering vector is oriented apically (arrow). Note
that the bend of the anterior leaflet is less prominent with sym-
metric tethering due to apical tethering at the leaflet’s tip by
the MC. A, Anterior annulus; P, posterior annulus. Reproduced
with permission from Circulation.55
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between the musculature of the LV myocardium (at the PM) and the
mitral annulus (at the fibrous trigones), maintaining so-called annular-
papillary or ventricular-valvular continuity.68 From their insertion at
the base of the left ventricle, epicardial fibers descend along the ante-
rior wall toward the apex, gradually becoming subendocardial, where
they give rise to the PM.69,70 The strut chords emerging from the PM
attach to a dense collagen network of the AML,71,72 which provides
fibrous continuity that ultimately terminates at the fibrous trigones
(completing the ventricular-valvular loop). During systole, the strut
chords, much like stretched rubber bands, remain under tension,
which is transmitted to the PM and fibrous trigones.73,74 The
tension in the strut chords is made evident from the retraction of
the PM that follows their division. It has been proposed that loss of
this tension is transmitted from the PM to the vertical epicardial
Figure 11 Asymmetric tethering. (A) Systolic frame in an apical four
a posteriorly oriented jet of MR. See Video 1B.
fibers, with which they form a continuous syncytium, resulting in
perturbations in LV function and geometry.75-77 This remains
controversial, however, as a number of studies78-80 have failed to
demonstrate any significant LV remodeling or deterioration of LV
function after strut chord transection.

PM repositioning is an alternative approach used to reduce leaflet
tethering. Repositioning the PM closer to the annular plane increases
chordal slack allowing for more physiologic coaptation. A number of
innovative approaches have been developed, including the creation
of a PM sling81 and infarct plication.82 The Coapsys device
(Myocor Inc., Maple Grove, MN; Figure 15) consists of two epicardial
pads interconnected by a cord that spans the LV cavity. As the chord is
shortened, not only are the PM repositioned, but annular distortion is
also corrected.83 A complete discussion of the various procedures
used for PM repositioning is beyond the scope of this article, and
the interested reader is referred to a recent review of the subject.84

Despite advances in the surgical treatment of ischemic MR, recur-
rence of significant MR after ring annuloplasty continues to be prob-
lematic. Rates as high as 30% have been reported in the past,63

although it has been suggested that innovative ring designs85,86 and
novel subannular procedures84 have substantially reduced this fig-
ure.84 The mechanism underlying recurrent MR is thought to be con-
tinued LV dilatation from adverse remodeling. Persistence of even
minor amounts of MR postoperatively may be significant, because
MR serves as both the cause and the result of adverse remodeling
and can incite a vicious cycle inexorably leading to LV dilatation and
failure.87 Surgical elimination of ischemic MR halts the progression
of adverse remodeling, instead setting into motion molecular and cel-
lular processes that promote a reverse LV remodeling phenotype.88

Several studies have demonstrated significant reductions in LV size af-
ter annuloplasty,89,90 although reverse remodeling is less likely once
LVend-diastolic dimension has exceeded 6.5 cm.91 It should be noted
that although recurrent MR is widely attributed to adverse LV remod-
eling, it can occur in its absence, presumably because of subtle and
highly localized remodeling not detectable echocardiographically.92

A number of echocardiographic predictors of persistent and/or re-
current MR after mitral annuloplasty have been identified55,57,93-96

and are listed in Table 1. Among these, tenting height > 1.0 cm and
-chamber view. See Video 1A. (B) Color Doppler image showing



Figure 13 (A) The undersized annuloplasty ring hoists the posterior annulus anteriorly, increasing the distance between the PM tip
and the posterior annulus. Increased tethering of the posterior leaflet widens the posterior leaflet angle, rendering it immobile. Repro-
duced with permission from Circulation.66 (B) Apical long-axis image after undersized ring annuloplasty. Note the anterior annulus
(blue circle) and the anteriorly displaced posterior annulus (red circle). The posterior mitral leaflet (arrow) is excessively tethered
with substantial widening of the posterior leaflet angle. See Video 3.

Figure 12 Symmetric tethering. (A) Systolic frame in an apical four-chamber view. See Video 2. (B) Color Doppler image showing
a centrally oriented jet of MR. Images courtesy of Dr. Eustachio Agricola.
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tenting area > 2.5 cm2 were found to be highly specific but relatively
insensitive for predicting postoperative MR.57 By contrast, a posterior
leaflet angle > 45�,57 as well as a distal anterior leaflet angle > 25�,55

are highly sensitive and specific. Postoperative MR is more common
in patients with symmetric tethering compared with those with asym-
metric tethering.55 These guidelines may be helpful in identifying
high-risk patients in whom adjunctive therapies (chord cutting, PM
repositioning) or mitral valve replacement might be considered.
Strut

chord

Restored

coaptationMR

Figure 14 Strut cord transection. Note that the untethered leaf-
let has more surface area available for coaptation. Reproduced
with permission from Circulation.67
Novel Percutaneous Therapies

A number of percutaneous approaches to the treatment of ischemic
MR have recently been developed. Percutaneous mitral valve repair
is an adaptation of the surgical Alfieri stitch,97 in which the A2-P2 scal-
lops are approximated with a clip (e.g., MitraClip; Evalve Inc., Menlo
Park, CA) instead of suture material, creating a double-orifice config-
uration (Figure 16). Notwithstanding the reduction in orifice area,



Figure 15 Coapsys device. Echocardiographic images obtained before (left) and after (right) insertion of a Coapsys device (arrow).
Note the reduction in LV internal dimension after insertion. Reproduced with permission fromMishra YK, Mittal S, Jaguri P, Trehan N.
Coapsys mitral annuloplasty for chronic functional ischemic MR: 1-year results. Ann Thorac Surg 2006;81:42–6.

Table 1 Echocardiographic predictors of persistent and/or
recurrent MR

Predictor Source

Leaflet deformation indices
Tenting height $ 1.0 cm Magne et al57

Tenting height $ 1.1 cm Calafiore et al94

Tenting area $ 2.5 cm2 Magne et al57

Tenting area $ 1.6 cm2,* Kongsaerepong et al93

Posterior leaflet angle $ 45 Magne et al57

Distal anterior leaflet angle > 25 Lee et al55

Annular size

Mitral annular dimension $ 3.7 cm* Kongsaerepong et al93

MR jet characteristics

Grade > 3.5* Kongsaerepong et al93

Central or complex McGee et al63

LV factors
Systolic sphericity index $ 0.7 Gelsomino et al95

LV end systolic volume $ 145 mL Gelsomino et al95

Restrictive LV diastolic filling pattern Eremiene et al96

*Measurements made by intraoperative transesophageal echocardi-

ography.

Figure 16 Three-dimensional echocardiographic image of the
mitral valve after the insertion of a MitraClip device (insert). A
characteristic double orifice is seen (arrows). Reproduced with
permission from J Am Coll Cardiol.99
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hemodynamically significant mitral stenosis does not appear to be
a problem.98 The Endovascular Valve Edge-to-Edge Repair Study
(EVEREST) II99 followed patients with hemodynamically significant
functional and degenerativeMRwho underwent percutaneousmitral
valve clipping.At1 year, almost two thirdswere free fromdeath,mitral
valve surgery, or MR > 2+. A randomized comparison with conven-
tional surgical repair or replacement is currently under way. It should
be noted that the EVEREST II trial only enrolled patients withMR jets
originating centrally (at A2-P2), and it remains to be determined
whether percutaneous valve repair is broadly applicable to the full an-
atomic spectrum of tethering patterns in ischemic MR. The investiga-
tors of this study observed that anteroposterior annular diameter did
not increase during 12 months of follow-up, suggesting stabilization
by the tissue bridge formed as a result of healing around the
MitraClip device. LV dilatation might also be limited by this tissue
bridge through enhanced ventricular-valvular continuity.99

Percutaneous ring annuloplasty devices take advantage of the ana-
tomic relation of the coronary sinus to the posterior mitral annulus.



Figure 17 Echocardiographic images obtained (A) before and
(B) after percutaneous coronary sinus annuloplasty. Note the
marked reduction in MR after implantation. The red arrows are
pointing to the coronary sinus. Various percutaneous annulo-
plasty devices are shown. (C) CARILLON (Cardiac Dimensions,
Kirkland, WA). (D)MONARC (Edwards Lifesciences, Irvine, CA).
(E) Percutaneous Transvenous Mitral Annuloplasty Device
(Viacor Inc., Wilmington, MA). Reproduced with permission
from Circ Cardiovasc Interv.104
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Although this spatial relationship is variable,100 this does not appear to
affect procedural outcomes.101 Percutaneous ring annuloplasty devices
reduce the anteroposterior dimension of the annulus, and acute im-
provements of one MR grade (3+ to 2+) have been demonstrated102
(Figure17). Because the coronary sinus frequently crosses the left circum-
flex artery, arterial occlusion remains a barrier to use in patients with un-
suitable coronary anatomy. The published data102-104 on percutaneous
annuloplasty reflect preliminary observations, and additional research
into the safety and efficacy of this procedure is needed.
Cardiac Resynchronization Therapy

Restoration of intraventricular synchrony with CRT has been shown
to have a number of salutary effects in patients with ischemic MR.
Acute reductions in MR have been attributed to restoration of
PM44 and annular105 synchrony. CRT has also been shown to offset
otherwise excessive tethering forces by increasing LV dP/dt (closing
forces).46,106 It is interesting to note that restoring mechanical
synchrony blunts exercise-induced increases in ROA.107 Over the
long term, CRT is thought to reduce MR through reverse remodeling.
However, it should be emphasized that in this respect, the response to
CRT is more robust in functional MR than ischemic MR.108
CONCLUSIONS

Ischemic MR is a complex disorder for which echocardiography re-
mains an invaluable investigative and diagnostic tool. As our under-
standing of its pathogenesis continues to evolve, additional insights
will undoubtedly lead to the development of innovative therapies
in the future.
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